Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 335: 139125, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37277002

ABSTRACT

Currently, novel photocatalysts have attracted increasing attention to effectively utilizing abundant solar energy to meet the energy demands of humans and mitigate environmental burdens. In this work, we developed a novel and highly efficient photocatalyst consisting of In2S3 doped with two elements (Ag and Zn) and decorated with reduced graphene oxide (rGO) sheets. The crystal structure, morphology, electrical properties, and optical properties of the prepared materials were studied using various analytical techniques, and their photocatalytic activity was thoroughly investigated. It was confirmed that within 10 min, over 97% decomposition of organic dyes was achieved by using Ag-Zn co-doped In2S3/rGO catalyst, while only 50 and 60% decompositions were achieved by conventional pure In2S3 and In2S3/rGO nanocomposite, respectively. Its photoelectrochemical (PEC) water-splitting performance was also significantly improved (∼120%) compared with pure In2S3 nanoparticles. This study provides a new vision of using Ag-Zn:In2S3 decorated on rGO sheets as an efficient photocatalyst under solar light irradiation for environmental remediation and hydrogen production.


Subject(s)
Environmental Pollutants , Graphite , Humans , Light , Graphite/chemistry , Zinc
2.
Dalton Trans ; 52(27): 9315-9327, 2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37350156

ABSTRACT

A novel BiVO4/FeMn layered double hydroxide (LDH) nanocomposite was fabricated and applied for green and efficient ultrasound-assisted oxidative desulfurization (UAODS) of real fuel (hydrotreated oil). The physicochemical properties of the prepared BiVO4/FeMn LDH nanocomposites are elucidated using techniques such as XRD, FT-IR, BET, SEM, XPS, Raman, and TGA. The desulfurization results revealed that both BiVO4 and FeMn LDH were crucial in the UAODS process in the presence of H2O2 as a green oxidant and acetonitrile as an extracting solvent. The desulfurization activity was optimized by varying the process conditions (time, catalyst weight, type of oxidant, O/S molar ratio, ratio of solvent to oil, and type of sonicator). The prepared nanocomposite exhibited remarkable desulfurization performance, reaching up to 99.8% under the optimized reaction conditions. Moreover, the catalyst exhibited high stability and could be reused four times without a notable decline in the performance. Significantly, this research reveals the robustness of the newly synthesized nanocomposite for efficient UAODS in a short time and low catalyst dosage. The proposed desulfurization mechanism was investigated.

3.
Molecules ; 28(9)2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37175102

ABSTRACT

Brown macroalgae (BMG) were used as carriers for ZnO (ZnO/BMG) and cobalt-doped ZnO (Co-ZnO/BMG) via facile microwave-assisted hydrothermal synthesis. The multifunctional structures of synthesized composites were evaluated as enhanced antioxidant and anti-diabetic agents based on the synergistic effects of ZnO, Co-ZnO, and BMG. BMG substrate incorporation and cobalt doping notably enhanced the bioactivity of the synthesized ZnO nanoparticles. As an antioxidant, the Co-ZnO/BMG composite exhibited highly effective scavenging properties for the common free reactive oxygen radicals (DPPH [89.6 ± 1.5%], nitric oxide [90.2 ± 1.3%], ABTS [87.7 ± 1.8%], and O2●- [46.7 ± 1.9%]) as compared to ascorbic acid. Additionally, its anti-diabetic activity was enhanced significantly and strongly inhibited essential oxidative enzymes (porcine α-amylase (90.6 ± 1.5%), crude α-amylase (84.3 ± 1.8%), pancreatic α-glucosidase (95.7 ± 1.4%), crude intestinal α-glucosidase (93.4 ± 1.8%), and amyloglucosidase (96.2 ± 1.4%)). Co-ZnO/BMG inhibitory activity was higher than that of miglitol, and in some cases, higher than or close to that of acarbose. Therefore, the synthetic Co-ZnO/BMG composite can be used as a commercial anti-diabetic and antioxidant agent, considering the cost and adverse side effects of current drugs. The results also demonstrate the impact of cobalt doping and BMG integration on the biological activity of ZnO.


Subject(s)
Diabetes Mellitus , Metal Nanoparticles , Sargassum , Seaweed , Zinc Oxide , Animals , Swine , Antioxidants/pharmacology , Antioxidants/chemistry , Sargassum/metabolism , Zinc Oxide/pharmacology , Zinc Oxide/chemistry , alpha-Glucosidases , Hypoglycemic Agents/pharmacology , alpha-Amylases , Cobalt/chemistry , Metal Nanoparticles/chemistry , Seaweed/metabolism
4.
Int J Biol Macromol ; 242(Pt 2): 124713, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37148946

ABSTRACT

The chitosan matrix was used as a substrate for ZnO nanoflowers (ZnO/CH) and Ce-doped ZnO nanoflowers (Ce-ZnO/CH) by microwave-induced hydrothermal synthesis processes. The obtained hybrid structures were assessed as enhanced antioxidant and antidiabetic agents considering the synergetic effect of the different components. The integration of chitosan and cerium induced significantly the biological activity of ZnO flower-like particles. Ce-doped ZnO nano-flowers show higher activities than both ZnO nanoflowers and ZnO/CH composite reflecting the strong effect of surface electrons that were formed by the doping process as compared to the high interactive interface of the chitosan substrate. As an antioxidant the synthetic Ce-ZnO/CH composite achieved remarkable scavenging efficiencies for DPPH (92.4 ± 1.33 %), nitric oxide (95.2 ± 1.81 %), ABTS (90.4 ± 1.64 %), and superoxide (52.8 ± 1.22 %) radicals which are significantly higher values than Ascorbic acid as standard and the commercially used ZnO nanoparticles. Also, its antidiabetic efficiency enhanced greatly achieving strong inhibition effects on porcine α-amylase (93.6 ± 1.66 %), crude α-amylase (88.7 ± 1.82 %), pancreatic α-glucosidase (98.7 ± 1.26 %), crude intestinal α-glucosidase (96.8 ± 1.16 %), and amyloglucosidase (97.2 ± 1.72 %) enzymes. The recognized inhibition percentages are notably higher than the determined percentages using miglitol drug and slightly higher than acarbose. This recommends the Ce-ZnO/CH composite as a potential antidiabetic and antioxidant agent compared with the high cost and the reported side effects of the commonly used chemical drug.


Subject(s)
Chitosan , Zinc Oxide , Animals , Swine , Antioxidants/pharmacology , Chitosan/chemistry , Zinc Oxide/chemistry , alpha-Glucosidases , Microwaves , Hypoglycemic Agents/pharmacology , alpha-Amylases
5.
Environ Res ; 209: 112768, 2022 06.
Article in English | MEDLINE | ID: mdl-35085558

ABSTRACT

A halotolerant biosurfactant producer Pseudomonas aeruginosa strain NSH3 (NCBI Gene Bank Accession No. MN149622) was isolated to degrade high concentrations of recalcitrant polyaromatic hydrocarbons (PAHs) and polyaromatic heterocyclic sulfur compounds (PASHs). In biphasic batch bioreactors, the biodegradation and biosurfactant-production activities of NSH3 have been significantly enhanced (p < 0.0001) by its decoration with eco-friendly prepared magnetite nanoparticles (MNPs). On an artificially contaminated sediment microcosm level, regression modeling and statistical analysis based on a 23 full factorial design of experiments were trendily applied to provide insights into the interactive impacts of such pollutants. MNPs-coated NSH3 were also innovatively applied for nanobioremediation (NBR) of in-vitro diesel oil-polluted sediment microcosms. Gravimetric, chromatographic, and microbial respiratory analyses proved the significantly enhanced biodegradation capabilities of MNPs-coated NSH3 (p < 0.001) and the complete mineralization of various recalcitrant diesel oil components. Kinetic analyses showed that the biodegradation of iso- and n-alkanes was best fitted with a second-order kinetic model equation. Nevertheless, PAHs and PASHs in biphasic batch bioreactors and sediment microcosms followed the first-order kinetic model equation. Sustainable NBR overcome the toxicity of low molecular weight hydrocarbons, mass transfer limitation, and steric hindrance of hydrophobic recalcitrant high molecular weight hydrocarbons and alkylated polyaromatic compounds.


Subject(s)
Heterocyclic Compounds , Petroleum , Biodegradation, Environmental , Geologic Sediments , Sulfur , Sulfur Compounds , Surface-Active Agents
6.
J Colloid Interface Sci ; 606(Pt 1): 337-352, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34392030

ABSTRACT

The construction of a Z-scheme photocatalyst by coupling semiconductors with conductors is an efficient way to achieve high pollutant degradation efficiency. In this study, a hydrothermal approach was used to fabricate a Z-scheme photocatalyst consisting of C-MoS2 sheets wrapped around octahedral anatase TiO2 nanocrystals. The catalyst showed excellent photocatalytic efficiency (99%) for methylene blue degradation with low catalyst loading (0.2 g L-1) under the simulated solar light within 60 min. High photocatalytic degradation efficiencies were also observed for Rhodamine B, methyl orange, and tetracycline under solar irradiation. The C-MoS2 acts as an electron mediator and serves as a carrier transmission bridge for the efficient electron-hole separation. The electron-rich (101)-faceted TiO2 benefits the Z-scheme recombination of electrons from the conduction band of TiO2 and holes at the valence band of MoS2. The semiconductor coupling of (101)-exposed octahedral TiO2 and 2H-MoS2 as well as the introduction of solid-state electron mediators, 1T-MoS2 and carbon, resulted in increased light absorption and accelerated charge transfer at the contact interface, which enhanced the photocatalytic activity of the photocatalyst significantly compared to those of P25, MoS2/TiO2, and C-MoS2. The efficient separation of electron-hole pairs prolongs their lifetime for oxidation and reduction reactions in the degradation process.


Subject(s)
Environmental Pollutants , Molybdenum , Catalysis , Titanium
7.
ACS Omega ; 5(48): 31342-31351, 2020 Dec 08.
Article in English | MEDLINE | ID: mdl-33324845

ABSTRACT

In order to improve the adsorption capacity of natural layered double hydroxyl (LDH) materials, the natural organic sources such as algae containing hydroxyl groups, amino groups, peptide connections, and alginate structures were used to improve LDH for the preparation of ZnMgAl LDH-algae composites (LDH-Ax). The structure of prepared composites was established and characterized via various techniques such as scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. The LDH-A2 sample displayed the highest efficiency for Cr(VI) removal, which reached to 99% at the optimum conditions. The prepared composite LDH-A2 showed high stability and reusability (91.7%) after five cycles. The kinetic studies revealed that the Cr uptake by LDH-A1 is described as pseudo-first order, while the case of LDH-A2 is described as pseudo-second order. This study reported that the easily synthesized LDH-Ax has an interesting environmental approval process to eliminate Cr ions from aqueous media quickly and effectively.

8.
J Environ Manage ; 258: 110043, 2020 Mar 15.
Article in English | MEDLINE | ID: mdl-31929075

ABSTRACT

Two types of chitosan-based composites (chitosan/ZnO and chitosan/Ce-ZnO composites) were synthesized under microwave irradiation and characterized as advanced catalysts of enhanced photocatalytic activity under the visible light. The morphological investigation reflected the formation of ZnO and Ce doped ZnO at stunning micro flowers of nano limps. Additionally, the optical studies reflected a reduction in the bandgap of ZnO from 3.3 eV to 2.85 eV and 2.5 eV after supporting it onto chitosan chains and after doping it with cerium, respectively. The synthetic composites were applied in photocatalytic removal of malachite green dye under a visible light source. The synthetic CH/ZnO and CH/Ce-ZnO showed enhancement in the photocatalytic removal of M.G by 54% and 87%, respectively, as compared to the pure ZnO. The synthetic composites are of high stability and can be reused for five photocatalytic degradation cycles at stunning removal percentages. The main oxidizing radicals during the removal of M.G by CH/ZnO are the generated electron-hole pairs as well as the hydroxyl radicals. The effective species in CH/Ce-ZnO photocatalytic system are the photogenerated hydroxyl radicals followed by the electron-hole pairs.


Subject(s)
Chitosan , Zinc Oxide , Flowers , Light , Rosaniline Dyes
9.
J Colloid Interface Sci ; 555: 31-41, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31377646

ABSTRACT

Ni-doped and Ni/Cr co-doped TiO2 nanotubes were successfully synthesized using a novel hydrothermal method. The surface and bulk properties of as-synthesized nanopowders were characterized using various microstructural and optical techniques. The photocatalytic ability of these nanopowders was investigated systematically for the decomposition of methylene blue dye (MB) under visible light illumination. The morphological results revealed the structural transformation of TiO2 nanotubes to nanosheets, and further to a mixture of nanosheet/nanotube on doping with Ni and co-doping of Ni/Cr, respectively. Moreover, the Ni doping causes an optical absorption edge shifts towards lower wavelengths, while doping by Ni/Cr results to an optical absorption edge shifts towards higher wavelength in comparison to TiO2-nanotubes. Also, Ni-doping and Ni/Cr co-doping strongly affects the Raman vibrational modes owing to the changes in interplanar distance, crystallite size, dislocation density, and crystal microstrains. Among the undoped, doped and co-doped TiO2 nanoparticles, the 6Ni/4Cr co-doped TiO2 exhibited a higher efficiency of 95.6% and excellent stability towards the photocatalytic degradation of MB. It is attributed to the availability of many carriers for the efficient photo-oxidation within the UV-Vis optical absorption range. Also, the photocatalytic reaction kinetics and degradation mechanism of MB were discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...